
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

1

Scalable Multi-match Packet Classification Using
TCAM and SRAM

Yu-Chieh Cheng, Pi-Chung Wang

F

Abstract—Packet classification is an enabling technology for vari-
ous network services. Fast single-match packet classification can be
achieved by using ternary content addressable memory (TCAM) be-
cause of the superior speed performance. TCAM has some drawbacks
including incapability to store arbitrary ranges, confined TCAM capacity
and limited choices of entry lengths. Moreover, TCAM only reports the
first matching entry to impose a limitation on supporting multi-match
packet classification, which requires all matching rules. The existing
algorithms deal with the issues of TCAM-based multi-match packet
classification by burdening TCAM with extra entries and/or accesses.
In this work, we offload the overhead of TCAM to static random access
memory (SRAM) to achieve efficient multi-match packet classification.
Our scheme synthesizes TCAM compatible entries by using binary
decision trees and employs SRAM for further comparisons. Each syn-
thesized entry can be stored in one TCAM entry to significantly reduce
TCAM consumption and fulfill low power consumption. The experimental
results show that our scheme can lower the demand of TCAM to improve
both search latency and energy efficiency. The scalability of TCAM-
based multi-match packet classification can thus be improved drastically.

Index Terms—Packet classification, ternary CAMs, multi-match, range.

1 INTRODUCTION

Packet classification is one of the important functions
in packet forwarding engines embedded by Internet
routers to classify packets into network flows. It enables
many services such as firewall packet filtering, quality
of services, and intrusion detection. Packet classification
is based on rules which define multiple fields of packet
headers. These fields include source and destination IP
addresses, source and destination ports, and protocol.
The value of each field can be a prefix, a range, or an
exact value. Different services may use different fields
in a packet header. A field of a rule can be ignored
by specifying a wildcard. A rule matches a packet if all
fields of the rule match the corresponding fields of the
incoming packet. Each rule is associated with an action
to process matching packets. Some network services,
such as firewall and quality of services, perform single-
match packet classification, which only yields the best
matching rule. The best matching rule could be the rule
with the highest priority or the least cost. The services

The authors are with the Department of Computer Science and Engineering,
National Chung Hsing University, Taichung, Taiwan 402, ROC. E-mail:
pcwang@nchu.edu.tw

such as deep packet inspection, transparent monitoring
and usage-based accounting require multi-match packet
classification, which reports all matching rules [1]–[3].

Multi-match packet classification can be treated as a
generalization of the single-match alternate because the
highest-priority matching rule can always be extracted
from all matching rules. Since one single instance of
multi-match packet classification is usually faster than
multiple instances of single-match packet classification,
multi-match packet classification can also be used by
multifunction devices that perform single-match packet
classification for each function [4].

Currently, ternary content addressable memories
(TCAMs), an extension of CAM, have been widely used
for packet classification. They are embedded in line
cards to act as forwarding engines (or coprocessors) to
accelerate the process of packet forwarding. Each TCAM
cell can store 0, 1, and “don’t care”. In other words,
TCAM can store binary strings with arbitrary bit masks
(i.e. ternary strings). Each entry of a commodity TCAM
chip can be configured to have a width of 72, 144, 288,
or 576 bits. TCAM performs parallel searching upon all
entries and only needs one access to accomplish a search.
TCAM has several drawbacks including limited capac-
ity, high cost and high power consumption. The extra
hardware for implementing “don’t care” state includes
six transistors for the mask bit and four transistors for
the match logic. As a result, each TCAM cell needs 16
transistors, which is 2.7 times larger than a standard
SRAM cell [5]. In particular, TCAM costs about 30 times
more per bit of storage than SRAM and consumes 150
times more power per bit than SRAM [3]. The extra logic
and capacitive loading of TCAM also result in tripling
the access time of SRAM [3]. Because all of these issues
are directly associated with the number of TCAM entries
used, the storage efficiency of TCAM becomes critical.

Similar to CAM, TCAM reports only the first match-
ing entry indicating that it is inherently suitable for
single-match packet classification. To support multi-
match packet classification without using proprietary
hardware, either extra TCAM entries or accesses, or
both, is inevitable in the existing algorithms [1], [6]–
[8]. Another obstacle of TCAM for performing packet
classification is that ternary strings cannot represent
arbitrary ranges efficiently. In a trivial range-to-prefix



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

conversion, at most 900 TCAM entries are generated
for a rule with two 16-bit port ranges [3]. Although
novel range encoding algorithms have been proposed
to alleviate (or avoid) the cost of range representation,
speed or storage penalties are inevitable. In summary,
the original design of TCAM is not directly adaptable
to performing multi-match packet classification. Further
work is necessary to address the issue.

In this paper, we present a scalable algorithm for
TCAM-based multi-match packet classification. Since
TCAM only reports the first matching rule and suf-
fers from the cost of range representation, an efficient
TCAM algorithm which can achieve multi-match classi-
fication and eliminate the need of range representation
is desirable. The existing algorithms deal with these
two issues independently. For example, SSA [7] and
MUD [6] only address the storage problem of multi-
match packet classification. Although the multi-match
algorithms can combine with an efficient range represen-
tation algorithm, e.g. MUD and DIRPE [6], to minimize
the overall TCAM entries, extra cost is still incurred.
A traditional TCAM access includes one TCAM search
and one SRAM access1. To offload TCAM’s overheads,
we use SRAM to store searchable data structures. Our
algorithm employs binary decision trees to categorize
rules geometrically. Then, an index rule for each rule
subset is generated and stored in TCAM. The index rules
are TCAM friendly, which means that each index rule
occupies exactly one TCAM entry. The original rules
covered by an index rule are stored in the associated
SRAM entry for linear search. Our algorithm uses a
bitwise discriminator to yield all matching index rules in
TCAM. Since SRAM is more energy efficient and faster
than TCAM, the extra accesses to SRAM do not incur
high access latency and power consumption. Instead, by
reducing the number of TCAM entries, energy consump-
tion can be significantly reduced. The experimental re-
sults demonstrate that our scheme improves both power
efficiency and search latency of multi-match packet clas-
sification. As a result, the scalability of TCAM-based
multi-match packet classification is effectively improved.

In the rest of this paper, we provide an overview
of previous schemes, including those aimed for multi-
match packet classification and for other TCAM issues,
in Section 2. Section 3 describes the main idea of our
scheme. Section 4 presents our scheme in detail. The
experimental results are reported and discussed in Sec-
tion 5. Finally, we conclude this work in Section 6.

2 RELATED WORKS

In this section, we first review previous approaches
on TCAM-based multi-match packet classification. Then,
we introduce several related studies which address some
issues of TCAM-based packet classification and review
some research on software-based packet classification.

1. In a TCAM-based packet classifier, the content in the TCAM is
compared, but not the case for the coupled SRAM.

2.1 TCAM-based Multi-match Packet Classification

Some commercial TCAMs support multiple matching by
appending a valid bit to each TCAM entry. The valid
bit indicates whether the corresponding entry is valid or
not to be compared to the input search key. Initially, the
valid bits of all entries are set so that the first matching
rule (if any) will be reported in the first cycle. The valid
bit of the previous matching entry is unset and another
lookup with the same search key is issued again. The
process continues until no matching rule is reported.
All the valid bits must be reset for the next search key.
This approach requires m+1 TCAM read and 2m write
operations for each multi-match packet classification,
where m is the number of matching rules.

Lakshminaryanan et al. propose MUD, which uses
discriminators to retrieve multiple matching entries from
TCAM [6]. MUD exploits unused bits in each TCAM
entry to store an index, which satisfies that the TCAM
entries with the same index value do not overlap with
each other. The TCAM entries are sorted according to
their indices in an ascending order. In the search proce-
dure, a discriminator is appended to the search key for
determining the set of TCAM entries for a comparison.
Initially, the discriminator is set to wildcard to compare
all TCAM entries. After identifying a matching entry
with the index value i, the search procedure changes
the discriminator to “greater than i” to exclude previous
matching entries. The process repeats until no match is
found. MUD modifies the discriminator of the search
key instead of changing TCAM valid bits, and, conse-
quently, achieves better search performance. However,
MUD must convert a range which is larger than a certain
value into multiple ternary strings. Since one TCAM
access is required for each string, MUD may need more
TCAM accesses than the number of matching rules.
MUD also incurs high power consumption because each
multi-match classification compares all TCAM entries
multiple times [7].

Generating and storing all matching conditions of a
rule set in TCAM is another approach. In [1], a set
of geometric intersections of rules is determined for a
rule set. Each intersection corresponds to a pseudo rule
and each pseudo rule is associated with a list of rule
identifiers, or match list, to indicate the matching rules.
The pseudo rules are inserted into TCAM along with
the original rules. A pseudo rule must be positioned
in front of those rules in its match list to ensure the
correctness. The geometric intersection (GI) scheme only
needs one TCAM access to yield all matches; however,
the intersections in a rule set could be too large to be
stored in TCAM. Theoretically, there are O(Nk) pseudo
rules, where N is the number of original rules and k
is the number of fields. SSA [7] reduces the number of
pseudo rules based on the observation that the number
of intersections can be significantly reduced by splitting
a rule database into several subsets. For each subset, the
rules and their pseudo rules are stored in an independent



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

TCAM. Each multi-match packet classification accesses
all TCAMs to yield all the matching rules. SSA does
not consider the influence of extra TCAM entries caused
by range-to-prefix transformation for the range fields.
Its speed performance is tied to the number of subsets
to fit into TCAM storage. In [4], a dual-phase scheme
for rule set partitioning is presented. In the first phase,
the rules overlapping with each other are gathered in a
partition. The second phase further divides the rules in
a partition into different blocks in a TCAM chip which
can be accessed in parallel. The authors suggested that
a TCAM chip needs at least eight blocks for parallel
accesses. A recent work uses one TCAM for each field
and generates all possible match conditions for the last
two fields [8]. These match conditions are stored in
SRAM and accessed by using the index identifiers of the
last two fields. The performance of this scheme depends
on the number of distinct match conditions in a rule set.

Multi-match packet classification can be achieved by
modifying TCAM hardware. In [4], a bit vector is used
to store the results of all TCAM matchlines, where each
bit indicates whether the corresponding TCAM entry
is matched. A modified priority encoder is proposed
to retrieve the indices of all matching entries from the
bit vector, where each cycle outputs one index. BV-
TCAM [9] combines TCAM with Bit Vectors (BV) [10] to
address the issues of multi-match packet classification.
It stores range fields in SRAM to avoid rule expansion
in TCAM. The search procedure of BV-TCAM consists
of one search in TCAM and two one-dimensional range
searches in SRAM. It uses bit vectors to store the results
of both TCAM and SRAM searches, where the result
from TCAM is directly exported from matchlines with-
out passing through any priority encoder (i.e., priority
encoder is removed). The result of multi-match packet
classification is yielded by intersecting these bit vectors.
FSBV optimizes the combination of TCAM and SRAM
for Snort rule sets [11]. It splits port range fields into
multiple one-bit fields to avoid the slow range-matching
procedures, with the cost of accessing extra bit vectors.
FSBV may result in prolonged bit vectors for the rules
with arbitrary ranges. Both FSBV and BV-TCAM use
FPGA to implement their proprietary architecture.

2.2 Other Research on TCAM
There are numerous algorithms proposed to solve the
issues of TCAM-based packet classification, including
range representation [12]–[19], rule-set compression [20]–
[23], and energy consumption [12], [24]–[27]. The algo-
rithms addressing the first two issues can reduce the
requirement of TCAM storage. A smaller TCAM also has
better energy efficiency and shorter access latency [25].

In [28], the authors demonstrated that the maximum
cost of range-to-prefix conversion is W , where W is
the width of the range field. The problem of range-to-
prefix conversion can be alleviated by range encoding
[13]–[19]. There are two types of range encoding algo-
rithms, database-dependent and database-independent.

Database-dependent encoding algorithms have superior
efficiency for both TCAM entry length and count, but
they require extra memory accesses to map header val-
ues of the encoded fields. Database-independent encod-
ing algorithms avoid extra searches, but they may still
incur rule expansion. In [29], the port ranges are stored
in SRAM with wide words (e.g. 512 bits) to avoid the
cost of range representation.

TCAM minimization algorithms are designed for
single-matching packet classification, where only the first
matching entry will be reported. Some low-priority rules
are useless since they will not be reported by TCAM for
any packets. Several TCAM minimization algorithms are
developed to remove these redundant entries [20]–[23].

Since TCAM always reports the first-matching entry,
the insertion of a new rule must ensure that the prede-
fined rule priority is conformed. For single-match packet
classification, the priority of each rule is usually defined
by its order. Some algorithms of multi-match packet
classification also define the priority of each TCAM
entry. For example, a pseudo rule of GI [1] or SSA [7]
must have a higher priority than its overlapping original
rules. For MUD, a rule with a smaller index value has
a higher priority [6]. In [30], the authors improve the
update performance by moving only the overlapping
rules. To avoid TCAM entry movements, another algo-
rithm sorts rules according to their priority values [31].
The search procedure requires at most log |Pr| TCAM
accesses, where |Pr| denotes the number of distinct
priority values. CoPTUA is an algorithm which can
maintain the consistency of rules without locking the
TCAM coprocessor during the update process [32]. In
[24], update performance is improved by partitioning
rules into two subsets.

2.3 Software-based Packet Classification
Multi-match packet classification can also be achieved
by using slower software implementations. These im-
plementations may use different types of data structures
with optimized construction and search algorithms [3].
Decision tree has been considered as an effective data
structure for packet classification [33]–[35]. While the
algorithms using only a single decision tree may incur
high storage requirement for heavily overlapping rules,
the storage issue can be addressed by employing mul-
tiple decision trees. In [36], the authors present BSOL2,
binary-search-on-levels with two rule subsets, where the
first subset stores the rules with source prefix whose
length is less than five, and the remaining rules form
the second subset. Each subset is stored in one decision
tree. In some cases, this solution can significantly reduce
the memory requirement. However, it lacks of flexibility
and may not be suitable for all rule databases. EffiCuts
[35] generates one decision tree for rules with the same
combination of wildcard fields. Because there are at most
26 combinations, 26 decision trees are generated in the
worst case indicating deterioration of the search perfor-
mance. The authors proposed selective tree merging to



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

reduce the number of decision trees. Two trees with one
distinct wildcard field could be merged and five to six
trees are still required. In [37], an extension to BSOL is
proposed to generate new decision trees based on the
number of total rule replicas presented. This approach
generates a new decision tree if the number of total
rule replicas is higher than a predefined threshold value,
namely expansion factor. The rules replicated first are
stored in the new decision tree. The new decision tree
may lead to the construction of another one according
to the characteristics of the stored rules.

3 MOTIVATION AND CHALLENGES

Some of the existing schemes require complex hardware
configurations to achieve multi-match packet classifica-
tion. Several schemes use proprietary TCAM architecture
[4], [9] or extra hardware [9], [11], and some require
multiple TCAMs [7], [8]. Some schemes also use SRAM
to avoid the problem of range representation in TCAM
[9], [11]. Although these schemes may have superior
performance, the complex configuration may decrease
resource utilization due to the different characteristics
of a rule set. For example, the number of TCAM par-
titions and the size of each partition in [4] could vary
for different rule sets. A proprietary architecture may
also incur high implementation cost. To simplify the
hardware configuration and lower the implementation
cost, we focus on a succinct TCAM architecture with only
one single nonproprietary TCAM chip.

We observed that the state-of-the-art solutions for
multi-match packet classification based on native
TCAMs use extra bits [6] or extra TCAM entries [1], [7] to
yield all matching rules. Several algorithms even yield
redundant TCAM accesses [6], [7]. We summarize the
cost of these algorithms in Table 1, where the number
of unique discriminator values for MUD is optimized to
m, the number of matching rules in the worst case. In
addition to the cost of yielding all matching rules, range
representation in TCAM requires extra bits [6] or extra
TCAM entries [1], [6], [7].

Each TCAM chip is usually coupled with an off-
chip SRAM, where each TCAM entry is mapped to
an SRAM word. Once the TCAM chip is searched, a
priority encoder determines and encodes the location of
the highest-priority match. The encoded address is then
used to retrieve the corresponding data in the SRAM.

TABLE 1
Cost Comparisons for Multi-Match Packet Classification

Algorithms Using Non-proprietary TCAM

Entries Extra Bits TCAM Accesses
GI [1] O(Nk) 0 1

SSA [7] O((N/S)k) 0 S

MUD [6] O(N ) log2 m
(2r−1)

r
1 +

log2 mm−1

r
N : the number of rules, k: the number of inspected fields
S: the number of rule subsets, m: the maximum number of matching rules
r: the number of subfields after splitting a range field

(a) TCAM parameters generated by TCAM-Model [38].

(b) SRAM parameters generated by CACTI6 [39].

Fig. 1. Access Latency and Energy of TCAM and SRAM.

We use two notable software, TCAM-Model [38] and
CACTI6 [39], to generate the access latency and energy
of TCAM and SRAM with different sizes in Fig. 1.
The basic configurations involve 32nm process, 144-bit
TCAM entry width, and 512-bit SRAM entry width. The
number of TCAM entries varies from 256 to 524,288
and the number of SRAM entries varies from 64 to
65,536. As shown in Fig. 1(a), TCAM have scalability
issues since both access latency and energy consumption
increase exponentially when memory capacity increases.
In contrast, Fig. 1(b) shows that although increments can
also be found as SRAM increases in size, the increment
is moderate as compared to TCAM. The difference lies
in the design of the match line, search line, and priority
encoder of TCAM [38].

In this study, we improve the performance of TCAM-
based packet classification by incorporating SRAM in the
search procedure. Because of the presence of SRAM in
a TCAM-based architecture, incorporating both memory
technologies is advantageous in tackling the issues of
multi-match packet classification. Take the sample pa-
rameters in Fig. 1 as an example, where large TCAM
chips, e.g. 4.5 Mbits or larger, consume ten times or more
energy than the same-size SRAM chips. Given a packet
forwarding engine with a fixed power consumption
budget, the power consumption can be reduced if one
TCAM access is replaced by less than ten SRAM ac-
cesses. Accordingly, we alleviate the overhead of multi-
match packet classification by storing all overlapping
rules in one or several SRAM words while TCAM stores



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

the union of these overlapping rules. When the TCAM
entry matches an incoming packet, the rules in the
corresponding SRAM words are compared to yield the
matching ones. However, the number of overlapping
rules in different rule sets is usually different. In an
extreme case, all rules overlap with each other and result
in a pure linear search. In summary, our proposal faces
two challenges. First, the union of all overlapping rules
should be TCAM friendly so that the TCAM storage
efficiency can be optimized. Second, the number of over-
lapping rules corresponding to a TCAM entry should be
controllable to avoid a long search latency.

4 MULTI-MATCH USING SRAM-ASSISTED
TCAM (MUST)
We address both challenges mentioned above geometri-
cally. Assume that the rules in a database have k fields,
and each field can be an arbitrary range. These rules
can be treated as hyper-rectangles in a k-dimensional
space, where the width of each dimension is equal to
the corresponding range. The inspected header fields of
each packet can be treated as a point in this space.

To yield all matching rules efficiently, the rules that
match the same or similar packets should be gathered
in the same SRAM entry. The rules matching the same
packet must overlap with each other, i.e. the corre-
sponding hyper-rectangles of the rules that match the
same packet must overlap with each other in the k-
dimensional space. We split the k-dimensional space
into several disjoint subspaces to reduce the number of
possibly matching rules. Since a packet matches at most
one subspace, we only need to access the rules in a
subspace. We create one index rule for each subspace
and the rules in a subspace are stored in SRAM. To
perform packet classification, the search key is compared
with the index rules stored in TCAM to yield the first
matching TCAM entry. Then, the original rules stored in
the corresponding SRAM entry are retrieved by a linear
search to determine the matching rules. By properly
controlling the number of rules in a subspace, we can
keep the cost of extra SRAM accesses reasonable. In the
following, we describe the proposed algorithm in detail.

4.1 Space Decomposition Using a Single Decision
Tree
We use the data structure of a single decision tree to
serve the purpose of generating index rules. Each leaf
node of the decision tree corresponds to an index rule.
Because the index rules are stored and searched in
TCAM, the construction of our decision tree only focuses
on storage efficiency. The tree depth is not of interest
in our construction procedure, unlike the algorithmic
solutions based on decision trees [33]–[35]. We limit the
number of branches of a node to two to construct a
binary decision tree. We also consider that each field of
an index rule should be represented as a prefix so that
each index rule only occupies one TCAM entry.

In our proposed binary decision tree, the space of
an internal node is equally divided by its two child
nodes and the two subspaces differ only in one of the
dimensions. The two contrasting sides correspond to the
upper and lower half of a selected dimension of their
parent node. Each node of the decision tree has a list of
rules which overlap with the node’s subspace.

When constructing a binary decision tree, the first step
is to have a root node corresponding to the whole k-
dimensional space, and all rules are stored in the list
of the node. The rule list of a leaf node is allowed to
have at most bin-threshold (binth) rules. If the length
of a rule list is more than binth, then two child nodes
will be appended to the node by halving the length
of a selected dimension. Each rule in the parent node
will be inserted into a child node if its hyper-rectangle
overlaps with the space of the child node. The procedure
of building a decision tree stops when no new child
nodes are generated. In this procedure, a rule could
be inserted into both new child nodes to cause rule
replication. Assume that there are n rules whose ith field
is a wildcard, 1 ≤ i ≤ k, associated with a decision-
tree node. The value of n is larger than binth, and two
child nodes are generated accordingly. If the ith field is
selected for dividing the space of the node, then these
n rules will overlap with both child nodes to result
in n replicas. Moreover, the number of rules in both
child nodes remains the same as their parent node to
result in more child nodes and a higher decision tree.
In the worst case, these rules replicate exponentially to
result in explosive storage. To alleviate the problem of
rule replication, the field generating minimum replicas
is selected.

We show the pseudo codes of generating index rules
for a rule set in Fig. 2. Initially, the function, construct,
assigns all rules of rule set, R, in the root node. It then
calls another recursive function, divide, to generate leaf
nodes as mentioned above. The function, D(node, i),
calculates the number of replicated rules for the node
by using the ith field for partitioning. The value of i
should minimize the value of D(node, i) so that the divide
function can separate the rules into two child nodes with
the fewest rule replicas in each iteration.

We use a set of 11 two-field rules as an example to
explain the above procedure. The binary decision tree
for the rules in Table 2 is shown in Fig. 3, where the
binth value is two. The associated rules are listed in each
node. The leaf nodes are denoted either in bold or in
dotted-bold. The procedure of constructing a decision
tree is as follows. First, all rules are associated with the
root node. Next, the number of the distinct specifications
for each field is derived. Since there are eight distinct
field specifications for f1 and seven for f2, f1 is selected
for rule categorization. Accordingly, the rules are di-
vided into two buckets where one bucket corresponds
to the subspace 〈0∗, ∗〉 and the other corresponds to
the subspace 〈1∗, ∗〉. If the hyper-rectangle of a rule
overlaps with the subspace of a bucket, then the rule is



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

RuleSet construct(RuleSet R) {
root=new TreeNode;
node list=new TreeNodeList;
index rules=new RuleSet;
root.rulelist=R;
node list=divide(root, node list);
for (each node leaf node in node list) {

index rule=new Rule;
index rule.space=leaf node.space;
index rule.rulelist=leaf node.rulelist;
append index rule to index rules;

}
return index rules;

}

TreeNodeList divide(TreeNode node, TreeNodeList node list) {
if (|node.left.rulelist| ≤ binth)

append node to node list;
return node list;
node.left=new TreeNode;
node.right=new TreeNode;
select dimension i with minimum D(node, i);
node.left.space=lower half of node.space on dimension i;
node.right.space=upper half of node.space on dimension i;
for (each rule r in node.rulelist) {

if (r.space ∩ node.left.space 6= ∅)
append r to node.left.rulelist;

if (r.space ∩ node.right.space 6= ∅)
append r to node.right.rulelist;

}
node list=divide(node.left, node list);
node list=divide(node.right, node list);
return node list;

}

Fig. 2. Pseudo codes for generating index rules based on
single decision tree.

TABLE 2
An example with eleven rules on two fields.

Rule f1 f2 Rule f1 f2 Rule f1 f2
F1 ∗ 0010 F5 00∗ 11∗ F9 111∗ 00∗
F2 ∗ 0111 F6 000∗ 01∗ F10 0111 ∗
F3 0∗ 1∗ F7 111∗ 11∗ F11 1111 ∗
F4 0∗ 01∗ F8 101∗ 01∗

associated with the bucket. In this example, F1 and F2

are duplicated and inserted into both buckets. The above
procedure repeats for each bucket until the number of
rules in each bucket is less than or equal to two. Notice
that there are more than two rules in the leaf nodes with
dotted bold lines. These leaf nodes correspond to the
overlapping areas completely covered by more than two
rules. Since the overlapping rules always match all the
points in the area, a further space decomposition is no
longer necessary.

An index rule is synthesized for each leaf node. Each
index rule consists of two parts, rule specification stored
in TCAM and the associated original rules stored in
SRAM. The rule specification of a leaf node is generated
by collecting its ranges of all dimensions. Because the
space of any node is exactly half of its parent node,
each dimension of a subspace can be represented as a
prefix. As a result, the rule specification of an index
rule can be recorded by a single TCAM entry. For each
index rule, the specifications of the associated rules

F1-F11

F1-F6,F10 F1,F2,F7-F9,F11

F1,F2,F4,F6,F10 F3,F5,F10 F1,F2,F8,F9,F11 F7, F11

F1,F9,F11 F2,F8,F11F3,F5 F3,F10

F2,F8 F2,F11F1,F9,F11F1

F1,F10 F2,F4,F6,F10

F2,F4,F10F2,F4,F6

F2,F4,F10F2,F4,F6 F2,F4 F2,F4

f1: 0* f1: 1*

f2: 0* f2: 1* f2: 0* f2: 1*

f2: 00* f2: 01* f1: 00* f1: 01* f2: 00* f2: 01*

f1: 00* f1: 01* f1: 10* f1: 11*f1: 11*f1: 10*

f1: 000* f1: 001*f1: 010* f1: 011*

F1,F9,F11

F1,F9,F11

F1,F9,F11

F1,F9

F9,F11

F9,F11

F1

F2,F4,F6

F2,F4,F6

F4,F6

F4,F6 F2,F4,F10

F2,F4,F10

F2,F4,F10F2,F4

F4,F10

F4,F10 F1,F9,F11

f2: 010* f2: 011*

f2: 0110 f2: 0111

f1: 0110 f1: 0111

f2: 010* f2: 011*

f2: 0110 f2: 0111

f1: 110* f1: 111*

f1: 1110 f1: 1111

f2: 000* f2: 001*

f2: 0010 f2: 0011

Fig. 3. Decision tree for the rules in Table 2. (binth = 2)

are stored in SRAM. In Fig. 3, there is an index rule,
“〈000∗, 010∗〉 → F4〈0∗, 01∗〉, F6〈000∗, 01∗〉”, where the
rule specifications of F4 and F6 are stored in SRAM
for further comparison. The specifications of the original
rules could be ignored in some leaf nodes, e.g. the leaf
nodes with dotted bold lines in Fig. 3, because the
search keys matching these nodes always match the
corresponding original rules. The index rules of these
leaf nodes only record the indices of the associated rules.
One index rule of a dotted-bold leaf node in Fig. 3 is
“〈000∗, 0111〉 → F2, F4, F6”, where only the indices of
F2, F4 and F6 are stored in SRAM. When an index rule
in the TCAM is matched, the rules in the list of the
corresponding leaf node will be fetched from SRAM to
determine the matching rules. Because the index rules do
not overlap with each other, each packet classification
only accesses TCAM once. This architecture has two
advantages. First, the storage efficiency of TCAM is
promoted because index rules rather than the original
rules with range fields are stored in TCAM, where each
index rule occupies exactly one TCAM entry. Second,
because the subspaces of all leaf nodes in a decision
tree are disjoint to each other, each multi-match packet
classification is performed by using one TCAM search
and several SRAM searches upon a rule list.

The existence of the dotted-bold nodes usually leads
to a space-inefficient decision tree such as the one with
more leaf nodes than the original rules as illustrated in
Fig. 3. A proper field selection for space partitioning can
reduce the probability of rule replication only for some
cases. Rule replication is especially difficult to avoid
for the rules with wildcards. Increasing the binth value
is an approach to eliminating the dotted-bold nodes.
For example, we can use a larger binth value, four, to
construct the decision tree for the rules in Table 2. As
shown in Fig. 4, the number of leaf nodes is greatly
reduced as compared to the previous decision tree in
Fig. 3. However, it is difficult to determine a proper
binth value for a rule set since not all rules heavily
overlap with each other. The speed performance may



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

F1-F11

F1-F6,F10 F1,F2,F7-F9,F11

F1,F2,F4,F6,F10 F3, F5, F10 F1,F2,F8,F9,F11 F7,F11

F1,F9,F11 F2,F8,F11F1,F10 F2,F4,F6,F10

f1: 0* f1: 1*

f2: 0* f2: 1* f2: 0* f2: 1*

f2: 00* f2: 01* f2: 00* f2: 01*

Fig. 4. Decision tree for the rules in Table 2. (binth = 4)

also degrade since the number of SRAM accesses is
proportional to the binth value.

4.2 Space Decomposition Using Multiple Decision
Trees
For the heavily overlapping rules, space decomposition
with a single decision tree is inefficient. Although only
one TCAM access is required for a multi-match packet
classification, the storage performance of both SRAM
and TCAM is unmanageable. To leverage both speed and
storage performance, we allow a moderate increment of
TCAM accesses to achieve better storage performance.
Although extra TCAM accesses may degrade speed per-
formance, the degradation would not be obvious since a
memory chip with smaller capacity usually has shorter
access latency, which will be discussed in Section 5.
Since each decision tree requires one TCAM access,
multiple decision trees are employed to organize heavily
overlapping rules.

We extend the approach presented in [37] to serve our
purpose of decomposing a search space. The approach
is developed for the specialized decision tree of BSOL
whose search procedure performs binary search to de-
termine the matching leaf node. The idea of dynamically
generating new decision tree is applied to the binary
decision tree in our scheme. Unlike the previous ap-
proach that reduces both the number of rule replicas and
the height of a BSOL decision tree, our new approach
attempts to reduce the number of leaf nodes and keep
the number of decision trees low.

Our approach determines whether a rule should be
stored in a different decision tree according to the num-
ber of its replicas. We set an expansion factor to control
the number of replicas of a rule to be stored in a decision
tree. For each rule, there is a counter which is initially
set to zero. When a node is split into two child nodes,
each rule of the parent node is tested to identify the
presence of overlapping child nodes. If a rule overlaps
more than one child node, then the counter value is
increased by one. When the number of replicas is larger
than the expansion factor, this rule will be removed
from the decision tree and stored in a new rule set. The
procedure of tree construction proceeds for all of the
rules. If the new rule set is non-empty after constructing
a decision tree, then the above procedure repeats to
generate another decision tree until all rules are stored in
a decision tree. In the end, multiple decision trees might
be constructed that depend on the characteristics of the

RuleSet new construct(RuleSet R) {
node list=new TreeNodeList;
index rules=new RuleSet;
i = 0;
while (R 6= NULL) {

root[i]=new TreeNode;
root[i].rulelist=R;
R=NULL;
reset all counters of all rules in root[i].rulelist;
node list=new divide(root[i], node list, R);

}
for (each node leaf node in node list) {

index rule=new Rule;
index rule.space=leaf node.space;
index rule.rulelist=leaf node.rulelist;
append index rule to index rules;

}
return index rules;

}

TreeNodeList new divide(TreeNode node, TreeNodeList node list, Rule-
Set R) {

if (|node.left.rulelist| ≤ binth)
append node to node list;

return node list;
node.left=new TreeNode;
node.right=new TreeNode;
select dimension i with minimum D(node, i);
node.left.space=lower half of node.space on dimension i;
node.right.space=upper half of node.space on dimension i;
for (each rule r in node.rulelist) {

if (r.space ∩ node.left.space 6= ∅) {
append r to node.left.rulelist;
r.counter++;

}
if (r.space ∩ node.right.space 6= ∅)

append r to node.right.rulelist;
r.counter++;

}
r.counter−−;
if (r.counter > expansion factor) {

remove r from the current decision tree;
append r to R;

}
}
node list=new divide(node.left, node list, R);
node list=new divide(node.right, node list, R);
return node list;

}

Fig. 5. Pseudo codes for generating index rules based on
multiple decision trees.

original rule set. The leaf nodes of all decision trees are
then extracted to generate the index rules.

The pseudo codes for generating multiple decision
trees and the corresponding index rules are shown in
Fig. 5. The function, new divide, traces the number of
replicas for each rule and determines whether a rule
should be stored in a new decision tree. The function,
new construct, repeatedly calls the new divide function if
there are rules to be stored in a new decision tree.

We use the same example in Table 2 to illustrate the
new procedure for generating index rules by setting both
expansion factor and binth to two. Fig. 6 shows the initial
decision tree before the removal of the highly replicated
rules. This decision tree has the same first three layers as
the one in Fig. 3 since none of the rules has more than
two replicas. In the fourth layer, both rules, F10 and F11,
generate the third replicas to activate rule removal. Both



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

F1-F11

F1-F6,F10 F1,F2,F7-F9,F11

F1,F2,F4,F6,F10 F3, F5, F10 F1,F2,F8,F9,F11 F7,F11

F1,F9,F11 F2,F8,F11F3,F5 F3,F10F1,F10 F2,F4,F6,F10

F2,F4F2,F4,F6

f1: 0* f1: 1*

f2: 0* f2: 1* f2: 0* f2: 1*

f2: 00* f2: 01* f1: 00* f1: 01* f2: 00* f2: 01*

f1: 00* f1: 01*

Fig. 6. The initial decision tree for the rule set in Table 2
before removing highly replicated rules (denoted by dot-
ted circles).

F1-F11

F1-F6,F10 F1,F2,F7-F9,F11

F1,F2,F4,F6,F10 F3, F5, F10 F1,F2,F8,F9,F11 F7

F1, F9 F8F3,F5 F3F1 F2, F4, F6

F4F4, F6

f1: 0* f1: 1*

f2: 0* f2: 1* f2: 0* f2: 1*

f2: 00* f2: 01* f1: 00* f1: 01* f2: 00* f2: 01*

f1: 00* f1: 01*

First Decision Tree

F2,F10,F11
f1: 0* f1: 1*

F2,F10 F2,F11

Second Decision Tree

Fig. 7. Decision trees for the rule set in Table 2. The light
shade represents sibling nodes to be merged into one
leaf node. The dark shade represents two non-sibling leaf
nodes to be merged.

rules are removed from the nodes in the fourth layer
and leaf nodes in the above layers. For example, F11 is
removed from two fourth-layer nodes which originally
have three rules. Both nodes become leaf nodes after
removing F11. F11 is also removed from a leaf node
in the third layer, and, as a result, only one node in
the fourth layer is going to be split further. In the fifth
layer, F2, which has a replica, is to be removed. Finally,
the construction of the first decision tree is complete
with eight original rules stored, as shown in Fig. 7. In
summary, three rules are removed from the first decision
tree, namely, F2, F10 and F11, and are relocated to the
second decision tree.

After removing some rules from a decision tree, sev-
eral leaf nodes could be merged to decrease the number
of index rules. The procedure of merging two leaf nodes
involves comparing two leaf nodes in the same layer.
The following two conditions are satisfied for the merge
to occur. First, the field specifications of the index rules
of both leaf nodes can be merged into one ternary string.
Second, the total number of distinct rules in both nodes
is less than the binth value.

As shown in the first decision tree in Fig. 7, the nodes
in light shade can be merged since the total number
of distinct rules is equal to two. These nodes can be
detected easily because they have the same parent nodes.
Another two leaf nodes (denoted by dark shade), which

correspond to index rules, “〈0∗, 00∗〉 → F1〈∗, 0010〉”
and “〈1∗, 00∗〉 → F1〈∗, 0010〉, F9〈111∗, 00∗〉”, can also
be merged into “〈∗, 00∗〉 → F1〈∗, 0010〉, F9〈111∗, 00∗〉”,
although they originate from different parent nodes. In
Fig. 7, the number of leaf nodes can be reduced to seven,
where the optimal number of leaf nodes is six.

The index rules of leaf nodes from different layers
have at least one field with different bit masks. In
other words, merging the leaf nodes cannot yield a
TCAM-friendly index rule, e.g. the leaf nodes storing
F7 and F8 in Fig. 7. A technique of rule expansion
presented in [40] can be used to lower the cost of
storing non-TCAM-friendly index rules. For example,
the index rules of F7 and F8 are merged into one:
“〈1∗, ∗〉 → F7〈111∗, 11∗〉, F8〈101∗, 01∗〉”, whose f2 field
is expanded from range [0100:1111] to [0000:1111]. The
new index rule partially overlaps with the index rule
of F1 and F9. To preserve the search accuracy, the new
index rule must be placed behind that of F1 and F9.
Since an expanded index rule could overlap with many
others, this approach would lead to a considerable cost
of maintaining the sequence of index rules. In this study,
we do not implement the rule expansion technique.

Because of a heavy reliance on decision trees, our
scheme sometimes requires extra TCAM accesses. Al-
though the tradeoff between storage efficiency and speed
performance is inevitable, we believe that maintain-
ing storage efficiency is particularly critical for scalable
multi-match packet classification. The reason is that stor-
age efficiency also affects speed performance and energy
consumption in practice because a larger memory chip,
especially for TCAM, usually has worse performance.

4.3 Search Procedure

Our procedure of generating multiple decision trees
ensures that each rule is only stored in one decision
tree. As a result, the index rules of all decision trees
must be searched for all possible matches. The index
rules from different decision trees may overlap with each
other. To produce all matching index rules stored in a
TCAM chip, we need a multi-match approach to search
for the index rules in TCAM. Unlike performing multi-
match packet classification upon the rules with varied
number of matches, the number of matching index rules
is always equal to the number of generated decision
trees and is usually less than the maximum number of
matching rules.

We use a bitmap to distinguish the index rules from
different decision trees. Assume that there are d decision
trees. Each bitmap has d bits which are initially set to
“don’t care”. For the ith decision tree, the ith bit of its
bitmap is set to one. The bitmap is then appended to all
index rules of the ith decision tree.

To yield all matching index rules, one d-bit bitmap
is appended to the search key in each TCAM access.
Initially, all bits of the bitmap are set to one to compare
all index rules. Assume that an index rule from the jth



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

TABLE 3
Index rules for the rule set in Table 2.

Index Rule TCAM SRAM
I1 〈∗, 00∗, 1∗〉 F1〈∗, 0010〉, F9〈111∗, 00∗〉
I2 〈0∗, 01∗, 1∗〉 F4〈0∗, 01∗〉, F6〈000∗, 01∗〉
I3 〈0∗, 1∗, 1∗〉 F3〈0∗, 1∗〉, F5〈00∗, 11∗〉
I4 〈1∗, 01∗, 1∗〉 F8〈101∗, 01∗〉
I5 〈1∗, 1∗, 1∗〉 F7〈111∗, 11∗〉
I6 〈0∗, ∗, ∗1〉 F2〈∗, 0111〉, F10〈0111, ∗〉
I7 〈1∗, ∗, ∗1〉 F2〈∗, 0111〉, F11〈1111, ∗〉

decision tree matches the search key. In the next iteration,
the jth bit of the bitmap is set to zero so that the same
index rule will not match the search key again. Since
there is exactly one matching index rule in a decision
tree, each packet classification requires d iterations of
TCAM accesses. The original rules of all matching index
rules stored in SRAM are then compared to determine
the matching rules.

The comparisons of original rules stored in SRAM
can be carried out by additional hardware or the pro-
cessor embedded in a line card. In [29], a circuit for
processing 512-bit SRAM words is synthesized using a
0.18µm library. The circuit includes multiple prefix and
range comparators. Its consumed energy is 0.12 nJ per
operation, which is about the equivalent to one 2-Mbit
SRAM access in Fig. 1. The rule-matching circuit for
our scheme can be yielded by modifying the previous
circuit. On the other hand, a line card could be equipped
with a processor for assisting packet processing [41]
or performing software-based packet forwarding [42].
The processor retrieves the addresses of the possibly
matching rules from the TCAM-based forwarding engine
and accesses the original rules stored in the SRAM of the
line card for further comparisons.

In Table 3, we list the index rules from both decision
trees in Fig. 7. Each index rule stored in TCAM consists
of three fields: f1, f2 and a bitmap for identifying its
decision tree. The original rules along with their specifi-
cations are stored in the corresponding SRAM word. For
an incoming packet 〈0111, 0111〉, the search procedure
generates a search key, 〈0111, 0111, 11〉, to access TCAM.
Assume that the index rules are stored in TCAM in
an ascending order of their identifiers. An index rule,
I2, matches the search key. Its rules, F4 and F6, stored
in the corresponding SRAM word are then compared,
where only F4 matches the search key. Since I2 belongs
to the first decision tree, the search key is updated to
〈0111, 0111, 01〉 to avoid matching I2 again. In the second
TCAM access, I6 matches the search key so that F2

and F10 stored in SRAM are compared. Finally, three
matching rules, F4, F2 and F10, are yielded.

The index rules generated by our algorithm have the
same length as a typical five-field rule, which occupies
104 bits. There are 40 unused bits in a 144-bit TCAM
entry. Our scheme usually generates three to seven de-
cision trees and does not require any extra bit for range
encoding. There are quite enough spare bits reserved

for rule updates or specifying new fields. Our approach
of using a bitmap for searching different set of index
rules also avoids the cost of moving TCAM entries in
updating rules because of two properties. First, the index
rules of the same decision tree do not overlap with each
other. They can be stored in TCAM arbitrarily. Second,
the index rules from different decision trees can also
be arbitrarily stored in TCAM since the bits for iden-
tifying different decision trees do not have any implicit
ordering. Both properties could simplify the procedure
of updating rules since the insertion and deletion of
index rules do not involve the other TCAM entries.

4.4 Update Procedure

The procedure for updating rules stored in the proposed
data structure is described in this section. The rules
in a router vary to accommodate updated configura-
tions. Rule updates include insertion and deletion. The
proposed scheme can fulfill rule deletion by removing
the deleted rules from the corresponding SRAM entries
without modifying TCAM entries. After removing a
rule, the update procedure should check whether the
original index rule can be merged with another one, as
mentioned in Section 4.2. If the answer is affirmative,
then both index rules are merged into one and their
original rules are collected in the same SRAM word.
Merging two index rules could ensure that the storage
efficiency of the SRAM is always higher than 50%.

The update procedure for rule insertion is then de-
scribed. To facilitate a rule insertion, the first step starts
by randomly generating an address which matches the
inserted rule to access TCAM. For each decision tree,
the address has exactly one matching index rule. By
comparing the inserted rule and the matching index
rules, we can determine whether the new rule is enclosed
by an index rule. If there exists such index rules, then
the new rule can be stored in the available space of the
SRAM entry corresponding to the enclosure index rule. If
free SRAM space is not available, then the divide function
described in Fig. 2 is used to test whether the rules in
the SRAM entry and the new rule can be properly stored
in two child nodes. If the answer is positive, then two
new index rules for the new leaf nodes are generated
and the one corresponding to the original leaf node is
removed. The new index rules can be stored in any
empty TCAM entries indicating that no TCAM entry
movement is required.

If there does not exist any enclosure index rule or
the divide function cannot generate new child nodes
for storing the new rule, then the new rule is inserted
into the root node of a new decision tree to generate
a new index rule like “〈∗, ∗, . . . , ∗ . . . 1〉 → new rule”.
None of the existing TCAM entry is affected. The new
decision tree can also be used for storing new rules so
that the consumption of spare bits can be smoothed. All
data structure should be reconstructed when the update
procedure runs out of all spare bits.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

5 PERFORMANCE EVALUATION

To conduct the performance evaluation, we implement
our algorithm by using GNU C++ to yield the per-
formance metrics of interests. The performance metrics
include TCAM and SRAM storage requirements, and
search latency and energy consumption per packet clas-
sification in the worst case. We also use the energy-
delay product to consider energy consumption and
speed performance simultaneously. The TCAM storage
requirement is measured by the number of occupied 144-
bit TCAM entries and the SRAM storage requirement
counts the number of stored rules. Each rule stored in
SRAM consumes 20 bytes. To keep the cost of SRAM low,
the expansion factor is fixed to two. We assume that there
are 512 bits in an SRAM word, and each word stores
three rules and one pointer for chaining another SRAM
word. Multiple sequential SRAM accesses are required
if there are more than three rules to be compared. We
extract the search latency and energy consumption per
access of TCAM and SRAM for different memory sizes
in Fig. 1. For each rule set, we choose the parameters
of the smallest chip which is larger than the required
storage for calculation. With the number of TCAM and
SRAM accesses per classification, we can calculate the
search latency and energy consumption.

Our performance evaluation consists of two parts. In
the first part, we use Snort rules [43] downloaded from
http://www.snort.org to depict the performance of our
scheme. In the second part, we evaluate the perfor-
mance of our scheme by using the five-field rule sets
acquired from [44]. These rule sets can be downloaded
from http://www.arl.wustl.edu/∼hs1/PClassEval.html.
In both parts, we compare our scheme, MUST, with
three previous algorithms, MUD with DIRPE [6], SSA
[7], and GI [1]. The storage performance of SSA can be
improved by splitting the original rule set into more sets
[7]. In our experiment, we collect the numerical results
of SSA-2 and SSA-4, where SSA-2 and SSA-4 split the
original rule set into two and four sets, respectively. To
simplify the comparison, all sets of SSA are stored in a
TCAM chip. We use the bitmap mentioned in Section 4.3
to distinguish the rules of different sets. Similar to our
scheme, SSA must access each set to yield all matching
rules. We do not compare our scheme with the algo-
rithms using proprietary TCAM architectures because
both access latency and energy of these architectures
cannot be estimated. In addition, the implementation
cost of a proprietary TCAM architecture could be too
high to conduct an appropriate comparison.

5.1 Snort Rule Sets

There are four versions of Snort rules, 2.9.0.0, 2.9.1.0,
2.9.2.0, and 2.9.3.0, used in our experiments. The num-
bers of original rules for different versions vary from
888 to 1,147, where a larger set of rules has more rules
overlapping with each other. These Snort rules specify

few ranges and do not suffer from the cost of range rep-
resentation in TCAM. However, these rules may specify
negation values, e.g. $EXTERNAL NET for IP address
prefix or !80 for port number. The negation values may
result in a great expense of TCAM entries [1]. In [1],
a negation removal scheme is proposed to avoid the
problem of negation representation. All schemes in our
experiments apply negation removal for storage saving.

The first experiment determines a proper binth value
by testing the Snort rule sets. Since each SRAM access
fetches three rules, we set the binth value from 9 to 18
with a step value of three. Table 4 summarizes storage
performance for Snort rule sets with varying binth val-
ues, including the numbers of TCAM entries (TCAM.E),
rules stored in SRAM (SRAM.R), and decision trees (DT).
The number of rules stored in SRAM shows the number
of replicated rules and is related to the required SRAM
capacity. The number of decision trees determines the
bitmap length and the number of TCAM accesses in
a classification. Among these rule sets, version 2.9.3.0
has the highest number of overlapping rules and results
in the greatest number of decision trees. Snort v2.9.1.0
requires more TCAM entries than v2.9.2.0 and v2.9.3.0
for certain binth values. The fluctuation of storage per-
formance is caused by the proposed decision tree which
can only half a space in each tree node. The limitation
could lead to more leaf nodes if the number of rules
overlapping with each other is slightly more than the
binth value. In general, a large binth value can reduce
both the numbers of TCAM entries and decision trees. In
most cases, a larger binth value also reduces the number
of rule replicas, but the slower search performance is the
tradeoff. For example, a decision tree with a binth value
18 requires one TCAM access and six SRAM accesses. As
shown in Table 4, all Snort rule sets require only 3 TCAM
accesses but 18 SRAM accesses. According to the param-
eters depicted in Fig. 1, the total latencies of TCAM and
SRAM are 1.28ns and 5.12ns, respectively. This setting
results in biased access latencies for TCAM and SRAM
in a classification. To minimize the overall latency and
maximize the benefit of pipelining implementation (if
any), we select the smallest binth value (9) to balance the
access latencies of TCAM and SRAM in a classification.
We use the same binth value in all experiments.

The numbers of TCAM entries for different algorithms
are shown in Fig. 8. GI always consumes TCAM entries
to the greatest extent due to the large number of intersec-
tions among Snort rules. In some cases, it may need more
than 524K TCAM entries (or 72-Mbit TCAM capacity).
Both configurations of SSA (SSA-2 and SSA-4) can dras-
tically reduce the number of TCAM entries by splitting a
rule set, but they still need a more considerable number
of entries than MUD and our scheme. MUD incurs extra
TCAM entries because of range representation, even
when DIRPE is employed. Among these algorithms, our
scheme needs the least number of TCAM entries because
our scheme merges geometrically close-by rules, and
only index rules are stored in TCAM to result in fewer

http://www.snort.org
http://www.arl.wustl.edu/~hs1/PClassEval.html


0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

TABLE 4
Storage performance for Snort rule sets with different binth values.

SNORT Original Max. binth=9 binth=12 binth=15 binth=18
Version Rules Matches TCAM.E SRAM.R DT TCAM.E SRAM.R DT TCAM.E SRAM.R DT TCAM.E SRAM.R DT

2.9.0.0 888 18 396 1,742 4 304 1,802 3 169 1,403 3 113 1,152 3
2.9.1.0 1,058 19 577 2,142 6 456 2,233 4 363 2,121 3 225 1,608 3
2.9.2.0 1,097 21 557 2,152 6 493 2,263 5 407 2,311 5 191 1,817 3
2.9.3.0 1,147 22 413 1,648 7 475 2,294 5 342 2,199 4 244 2,243 3

TCAM.E: TCAM Entries, SRAM.R: Rules stored in SRAM, DT: Decision Trees

Fig. 8. TCAM entries of different algorithms.

TCAM entries. Although the existing algorithms only
need TCAM accesses to accomplish packet classification,
their overall costs are higher than our scheme.

We further depict the required memory space for
TCAM and SRAM in Fig. 9, where the required TCAM
size correlates with the number of required TCAM en-
tries. The previous algorithms only store rule indices in
SRAM, but their SRAM requirements are quite different.
GI and SSA need to store one rule list for each TCAM
entry. When a rule overlaps with numerous rules, the
rule index is repeated in different rule lists to incur
considerable storage. Fig. 9 shows that the SRAM re-
quirements of GI and SSA are highly related to their
TCAM requirements. The SRAM requirement of MUD
is too small to be illustrated in Fig. 9 because it only
stores one rule index in SRAM for each TCAM entry. Our
algorithm stores the overlapping rules in one or more
SRAM entries without generating any match condition.
The advantage of our scheme is obvious when there are
many overlapping rules. Although our algorithm needs
more SRAM storage than MUD, MUD needs fourfold or
more TCAM storage than our scheme. As a result, the
overall storage performance of our scheme is better than
that of MUD.

The search latency of each algorithm is shown in
Fig. 10. Although GI only needs one TCAM access and
one SRAM access to yield all matching rules, it has the
longest search latency because of the slow speed of a
large TCAM chip. SSA drastically reduces the number of
TCAM entries of GI to curtail the latency of each TCAM
access. Although SSA needs more TCAM accesses than

Fig. 9. Memory requirements of different algorithms.

Fig. 10. Search latency of different algorithms.

GI, the search latency of SSA is much shorter than that
of GI. The search latency of SSA-2 might be longer than
that of SSA-4 also because SSA-2 needs a much larger
TCAM chip than SSA-4 does. Among these algorithms,
MUD needs the most TCAM accesses. The minimum
number of TCAM accesses for MUD is the same as
the number of matching rules for a packet. MUD may
require multiple TCAM accesses for a certain range of
TCAM entries to further extend the search latency. The
number of TCAM accesses of our scheme is tied to the
number of generated decision trees. As shown in Table 4,
our scheme generates four to seven decision trees. Since
one TCAM access is required for each tree, our scheme
may need more TCAM accesses and search latency than
SSA for some Snort versions (2.9.1.0 and 2.9.2.0). In the
worst case, our scheme is 25% slower than SSA. In the



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

GI
SSA-2
SSA-4
MUD
MUST

En
er

gy
 (n

J)

0

5

10

15

20

Snort Version
2.9.0.0 2.9.1.0 2.9.2.0 2.9.3.0

Fig. 11. Energy consumption of different algorithms.

Fig. 12. Energy-delay product of different algorithms.

cases where our scheme outperforms SSA, the rate of
improvement varies from 3 to 20%.

We illustrate the energy consumption of different al-
gorithms in Fig. 11. Both TCAM chip size and number of
accesses dominate the power consumption in each clas-
sification. Similarly, while GI still consumes the highest
level of energy among all algorithms, SSA significantly
reduces energy consumption. SSA-2 always consumes
less energy than SSA-4 because of fewer TCAM accesses.
Although MUD needs the most TCAM accesses, its
low memory requirements also keep the overall energy
consumption low. Our scheme consumes the lowest level
of energy among these algorithms because it needs fewer
TCAM entries and accesses than MUD.

We use a metric, energy-delay product (EDP), to in-
vestigate the energy efficiency of different algorithms
by taking into account of search latency and energy
consumption per classification [45]. A smaller EDP value
indicates a better overall performance. As shown in
Fig. 12, GI has the worst EDP performance because of
large search latency and energy consumption. Although
SSA-2 always consumes less energy than SSA-4, SSA-4
outperforms SSA-2 by lowering search latency in Snort
v2.9.2.0. In general, both SSA-2 and SSA-4 have similar
EDP performance. Although both search latency and
energy consumption of MUD are quite different from

those of SSA, their EDP performance is similar for
most cases, except for Snort v2.9.3.0. Our scheme has
the best performance throughout all cases by providing
shorter search latency and lower energy consumption
simultaneously. The results demonstrate that although
our algorithm requires extra SRAM accesses, the extra
latency and energy consumption can be easily offset by
the benefits of a smaller TCAM size.

5.2 ClassBench Rule Databases

Next, we use ClassBench rule databases for performance
evaluation. There are three different types of rule sets,
access control list (ACL), firewalls (FW) and IP chain
(IPC). Each type includes one real database and three
synthetic ones generated by ClassBench [46]. The real
databases have 752, 269 and 1550 rules. The sizes of the
synthetic databases vary from 1K to 10K. The rules of the
FW databases specify the most wildcard fields and those
of the ACL databases have only wildcard specifications
in the source-port field. The detailed characteristics of
these rule databases can be found in [44]. Unlike the
Snort rules, the rules in these databases do not specify
negation but indicate many arbitrary ranges with high
costs of range-to-prefix conversion. Since these databases
vary in size and overlapping rules, they can be used to
test the scalability of our scheme.

We show both SRAM and TCAM memory storage in
Fig. 13. Because the ACL databases have the least over-
lapping rules, their TCAM entries are mainly contributed
by range-to-prefix conversion. The FW databases have
the most intersections. Even SSA-4 cannot store the 10K-
rule FW database in a 72-Mbit TCAM chip. Although
MUD uses DIRPE to decrease the cost of range repre-
sentation, the cost is inevitable. Our approach effectively
reduces the number of TCAM entries by synthesizing
index rules and avoiding the cost of range representa-
tion. Our scheme needs more SRAM storage than GI
and SSA for the synthetic ACL databases because of
storing complete rule specifications. When the number
of overlapping rules increases in the other databases, our
scheme benefits from lowering the number of TCAM
entries to reduce SRAM storage by avoiding the costs of
range representation and intersection rules. MUD needs
fewer SRAM storage and more TCAM entries than our
scheme. By assuming the cost of TCAM is thirty times
of that of SRAM [3], our scheme requires only 5 ∼ 54
percent (30 percent in average) storage cost of MUD.

We use energy-delay product in Fig. 14 to evaluate and
compare the performance of different schemes. When
the number of overlapping rules is small, GI has the
best EDP performance since it only accesses TCAM
once. However, when the number of overlapping rules
increases, both increment of search latency and energy
consumption would sharply increase the EDP value of
GI. SSA can smooth the performance degradation by
drastically reducing pseudo rules, which means it has
better scalability than GI. The search latency and energy



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

Fig. 13. Memory requirements of different algorithms for ClassBench databases.

Fig. 14. Energy-delay product of different algorithms for ClassBench databases.

consumption of MUD is tied to the number of TCAM ac-
cesses. As a result, MUD cannot benefit from its efficient
TCAM storage to outperform GI and SSA in most cases.
Our scheme has both advantages of low TCAM storage
and moderate number of TCAM accesses. Although
our scheme has worse EDP performance than that of
GI and SSA for ACL databases, it outperforms both
schemes for FW and IPC databases, which have more
overlapping rules. The results demonstrate that a scheme
based on pseudo rules, e.g. GI or SSA, is suitable for
the databases with only few overlapping rules since the
extra TCAM entries may not incur significant increment
of access latency. Our scheme has better performance
for the databases where a packet may match numerous
rules, e.g. Snort and FW/IPC databases.

6 CONCLUSIONS

Multi-match packet classification enables the services
such as deep packet inspection, transparent monitor-
ing and usage-based accounting. Fulfilling multi-match
packet classification solely based on TCAM may suffer
from extra TCAM entries, accesses, or both. In this paper,
we present a novel scheme by combing TCAM and
SRAM to reduce TCAM entries. Our scheme is based
on the observation that SRAM is larger, faster, and more

power efficient than TCAM. We offload TCAM’s over-
heads by using SRAM to store rules for comparison. We
use binary decision trees to generate TCAM-compatible
index rules and store the original rule specifications
in SRAM. Our scheme thus avoids the cost of range
representation. With the algorithm which generates mul-
tiple decision trees, the number of rule replicas can be
manipulated so that both TCAM and SRAM storage
can be maintained at a reasonable level. While both
access latency and power consumption of TCAM may
expand exponentially as the chip capacity increases, the
experimental results show that our scheme achieves sig-
nificant improvement for the required TCAM entries. In
summary, our scheme can effectively improve speed per-
formance and energy efficiency simultaneously, which
makes it feasible and scalable for multi-match packet
classification. In our future work, we attempt to apply
multi-match packet classification in OpenFlow switches,
where multiple flow tables in a pipeline can be merged
to shorten the search latency.

ACKNOWLEDGMENTS
This work was supported in part by the Ministry of
Science and Technology of Taiwan, R.O.C., under Grant
MOST 103-2221-E-005-061 and Grant MOST 103-2218-E-
002-033.



0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2470242, IEEE Transactions on Computers

REFERENCES
[1] F. Yu, R. H. Katz, and T. Lakshman, “Efficient Multimatch Packet

Classification and Lookup with TCAM,” IEEE Micro, vol. 25, no. 1,
pp. 50–59, 2005.

[2] Cisco 4700 Series Application Control Engine Appliance Device
Manager GUI Configuration Guide, Cisco, 2010. [Online]. Available:
http://www.cisco.com/en/US/docs/app ntwk services/data
center app services/ace appliances/vA4 1 0/configuration/
device manager/guide/dmgui cfgd.pdf

[3] D. E. Taylor, “Survey and Taxonomy of Packet Classification
Techniques,” ACM Computing Survey, vol. 37, no. 3, pp. 238–275,
2005.

[4] M. Faezipour and M. Nourani, “Wire-Speed TCAM-Based Archi-
tectures for Multimatch Packet Classification,” IEEE Transactions
on Computers, vol. 58, no. 1, pp. 5–17, 2009.

[5] R. K. Montoye, “Apparatus for storing Don’t Care in a content
addressable memory cell.” U.S. Patent 5,319,590, 1994.

[6] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
“Algorithms for Advanced Packet Classification with Ternary
CAMs,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 193–
204, 2005.

[7] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. H. Katz, “Efficient
Multimatch Packet Classification for Network Security Applica-
tions,” IEEE Journal on Selected Areas in Communications, vol. 24,
no. 10, pp. 1805–1816, 2006.

[8] R. Shen, X. Li, and H. Li, “A space- and power-efficient
multi-match packet classification technique combining tcams and
srams,” The Journal of Supercomputing, pp. 1–20, 2014.

[9] H. Song and J. W. Lockwood, “Efficient packet classification for
network intrusion detection using FPGA,” in Proceedings of the
ACM/SIGDA FPGA 2005, pp. 238–245.

[10] T. Lakshman and D. Stidialis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” in
Proc. ACM SIGCOMM’98, pp. 203–214.

[11] W. Jiang and V. K. Prasanna, “Field-split parallel architecture for
high performance multi-match packet classification using fpgas,”
in Proc. SPAA’2009, pp. 188–196.

[12] A. Kesselman, K. Kogan, S. Nemzer, and M. Segal, “Space and
Speed Tradeoffs in TCAM Hierarchical Packet Classification,” in
Proceedings of the IEEE Sarnoff Symposium 2008, pp. 1–6.

[13] Z. Kai, H. Che, W. Zhijun, L. Bin, and Z. Xin, “DPPC-RE: TCAM-
based Distributed Parallel Packet Classification with Range En-
coding,” IEEE Transactions on Computers, vol. 55, no. 8, pp. 947–
961, 2006.

[14] H. Che, Z. Wang, K. Zheng, and B. Liu, “DRES: Dynamic Range
Encoding Scheme for TCAM Coprocessors,” IEEE Transactions on
Computers, vol. 57, no. 7, pp. 902–915, 2008.

[15] Y.-K. Chang, C.-I. Lee, and C.-C. Su, “Multi-field Range Encoding
for Packet Classification in TCAM,” in Proceedings of the IEEE
INFOCOM 2011, pp. 196–200.

[16] X. He, J. Peddersen, and S. Parameswaran, “LOP RE: Range
Encoding for Low Power Packet Classification,” in Proceedings of
the IEEE LCN 2009, pp. 137–144.

[17] A. Bremler-Barr and D. Hendler, “Space-Efficient TCAM-Based
Classification Using Gray Coding,” in Proceedings of the IEEE
INFOCOM 2007, pp. 1388–1396.

[18] A. Bremler-Barr, D. Hay, and D. Hendler, “Layered interval codes
for tcam-based classification,” in Proceedings of the IEEE INFO-
COM 2009, pp. 1305–1313.

[19] C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Liu, “Fast
regular expression matching using small TCAMs for network
intrusion detection and prevention systems,” in Proceedings of the
USENIX Security 2010, pp. 8–8.

[20] R. Wei, Y. Xu, and H. J. Chao, “Block Permutations in Boolean
Space to Minimize TCAM for Packet Classification,” in Proceedings
of the IEEE INFOCOM 2012, pp. 2561–2565.

[21] C. R. Meiners, A. X. Liu, and E. Torng, “Bit Weaving: A Non-
Prefix Approach to Compressing Packet Classifiers in TCAMs,”
IEEE/ACM Transactions on Networking, vol. 20, no. 2, pp. 488–500,
2012.

[22] R. Cohen and D. Raz, “Simple Efficient TCAM Based Range
Classification,” in Proceedings of the IEEE INFOCOM 2010, pp. 1–5.

[23] C. R. Meiners, A. X. Liu, E. Torng, and J. Patel, “Split: Optimizing
Space, Power, and Throughput for TCAM-Based Classification,”
in Proceedings of the ACM/IEEE ANCS 2011, pp. 200–210.

[24] T. Banerjee-Mishra, S. Sahni, and G. Seetharaman, “PC-DUOS:
Fast TCAM lookup and update for packet classifiers,” in Proceed-
ings of the IEEE ISCC 2011, pp. 265–270.

[25] T. Banerjee-Mishra and S. Sahni, “PETCAM-A Power Efficient
TCAM Architecture for Forwarding Tables,” IEEE Transactions on
Computers, vol. 61, no. 1, pp. 3–17, 2012.

[26] W. Lu and S. Sahni, “Low-Power TCAMs for Very Large Forward-
ing Tables,” IEEE/ACM Transactions on Networking, vol. 18, no. 3,
pp. 948–959, 2010.

[27] T. Banerjee-Mishra and S. Sahni, “DUOS - Simple Dual TCAM
Architecture for Routing Tables with Incremental Update,” in
Proceedings of the IEEE ISCC 2010, pp. 503–508.

[28] O. Rottenstreich and I. Keslassy, “Worst-case TCAM rule expan-
sion,” in Proc. IEEE INFOCOM’2010, pp. 456–460.

[29] T. Banerjee, S. Sahni, and G. Seetharaman, “PC-TRIO: A Power
Efficient TCAM Architecture for Packet Classifiers,” IEEE Trans-
actions on Computers, vol. 64, no. 4, pp. 1104–1118, 2015.

[30] D. Shah and P. Gupta, “Fast Updating Algorithms for TCAMs,”
IEEE Micro, vol. 21, no. 1, pp. 36–47, Jan. 2001.

[31] H. Song and J. S. Turner, “Fast filter updates for packet classifi-
cation using tcam,” in Proc. GLOBECOM’06, pp. 1–6.

[32] Z. Wang, H. Che, M. Kumar, and S. K. Das, “CoPTUA: Consistent
Policy Table Update Algorithm for TCAM without Locking,” IEEE
Trans. Comput., vol. 53, no. 12, pp. 1602–1614, Dec. 2004.

[33] P. Gupta and N. McKeown, “Classifying packets with hierarchical
intelligent cuttings,” IEEE Micro, vol. 20, no. 1, pp. 34–41, 2000.

[34] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet clas-
sification using multidimensional cutting,” in Proc. ACM SIG-
COMM’2003, pp. 213–224.

[35] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar, “EffiCuts:
Optimizing Packet Classification for Memory and Throughput,”
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 207–218,
2010.

[36] H. Lu and S. Sahni, “O(log W) Multidimensional Packet Classifi-
cation,” IEEE/ACM Transactions on Networking, vol. 15, no. 2, pp.
462–472, 2007.

[37] Y.-C. Cheng and P.-C. Wang, “Packet Classification Using Dynam-
ically Generated Decision Trees,” IEEE Transactions on Computers,
vol. 64, no. 2, pp. 582–586, 2015.

[38] B. Agrawal and T. Sherwood, “Ternary CAM Power and Delay
Model: Extensions and Uses,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 5, pp. 554–564, 2008.

[39] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “CACTI
6.0: A Tool to Understand Large Caches,” HP Tech Report HPL-
2009, Tech. Rep., 2009.

[40] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla,
“Packet Classifiers in Ternary CAMs Can Be Smaller,” in Proc.
SIGMETRICS 2006, pp. 311–322.

[41] The Cisco QuantumFlow Processor: Cisco’s Next Generation
Network Processor, Cisco, 2008. [Online]. Available:
http://www.cisco.com/c/en/us/products/collateral/routers/
asr-1000-series-aggregation-services-routers/solution overview
c22-448936.pdf

[42] R. Ohlendorf, “A Network Processor Architecture with
Application-optimized Reconfigurable Processing Paths (FlexPath
NP),” Ph.D. dissertation, Technische Universitt Mnchen, 2010.

[43] M. Roesch, “Snort - Lightweight Intrusion Detection for Net-
works,” in Proceedings of LISA 1099, Berkeley, pp. 229–238.

[44] H. Song and J. S. Turner, “Toward advocacy-free evaluation of
packet classification algorithms,” IEEE Transactions on Computers,
vol. 60, no. 5, pp. 723–733, 2011.

[45] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok, “Energy and
Performance Evaluation of Lossless File Data Compression on
Server Systems,” in Proc. SYSTOR 2009, pp. 4:1–4:12.

[46] D. E. Taylor and J. S. Turner, “ClassBench: A Packet Classification
Benchmark,” in Proceedings of the IEEE INFOCOM 2005, vol. 3, pp.
2068–2079.

http://www.cisco.com/en/US/docs/app_ntwk_services/data_center_app_services/ace_appliances/vA4_1_0/configuration/device_manager/guide/dmgui_cfgd.pdf
http://www.cisco.com/en/US/docs/app_ntwk_services/data_center_app_services/ace_appliances/vA4_1_0/configuration/device_manager/guide/dmgui_cfgd.pdf
http://www.cisco.com/en/US/docs/app_ntwk_services/data_center_app_services/ace_appliances/vA4_1_0/configuration/device_manager/guide/dmgui_cfgd.pdf
http://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/solution_overview_c22-448936.pdf
http://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/solution_overview_c22-448936.pdf
http://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/solution_overview_c22-448936.pdf

